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If S is a bounded convex subset of R m
, the problem is to find a best approxima­

tion to a function in Lp(S), 1~ p ~ x, by an arbitrary subset of convex functions.
An existence theorem for a best approximation is established under a certain
condition on the subset. In particular, a best convex approximation exists. Abo
investigated are properties of norm-bounded subsets and Lp-convergent sequences
of convex functions. 't 1990 Academic Press. Inc.

1. I~TRODUCTION

Let L p , 1,,;; p ";;x." be the Lebesgue space of extended real functions on
a bounded convex subset of R m

. The problem is to find a best approxima­
tion to a function in L p by an arbitrary subset of convex functions. It is
shown that, under a certain condition on the subset, a best approximation
exists. In particular, a best approximation from the set of all convex func­
tions exists. As a tool for analysis, properties of norm-bounded subsets and
convergent sequences of convex functions are explored.

Let S c Rm be a bounded convex body, i.e., a convex set with nonempty
interior int(S). Let H be the set of all extended real-valued functions on S.
Let L p = L p(S), 1,,;; P < oc." denote the Banach space of all (equivalence
classes of) Lebesgue measurable functions I in H with Jill p < x and norm
:lfl!p = (J III p)IIP. Similarly, L oo = LyjS) is the Banach space of (equiv­
alence classes of) essentially bounded functions I with norm IIIi! ex =
ess sup III. A function k in H is said to be convex if

k(}.s + (1 - J.) t)";; lk(s) + (1- i.) k(t) (1.1)
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for ail 0 < I. < 1 and all s, t E S for which the right-hand side of (1.1) is
defined; i.e., only those, s, t for which k(s) and k(t) are simultaneously not
infinite with opposite signs are to be considered [11]. Equivalently, (1.1)
may be considered only when k(s) <x: and k(t) < x. It can easily be
shown that k is convex if and only if its epigraph,

E(k) = {(s, u) E 5 x R : k(s) ~ u},

is a convex subset of 5 x R [11]. Let K c H denote the set of all convex
functions. Clearly, K is a convex cone. Let Pc K be an arbitrary set In
what foHows a notation such as P n L p denotes all equivalence classes in II'
to which a function in P belongs. As usual, we carry out the arguments for
the representative element of the class. Let! E L p and J denote the infimum
of Iif-ki:p for k in PnLp. The problem is to find a g in PnL p, cailed a
best approximation to! from P n L p , so that Ii! - g:i p = J. For 1 < P < x,
L p is uniformly convex and, hence, a best approximation from P n L p exists
and is unique if P n Lp is closed and convex [3] . We are interested :n
examining existence when P n L p is not necessarily convex.

We say that Pc H is a.e. sequentially closed if it is closed under a.e. co0.­
vergence of sequences of functions. We denote by P the smallest superset
of P which is a.e. sequentially closed. Note that P is a.e. sequentially closed
if and only if P = P. Our main results appear in Section 3. We shovv that
if Pc H satisfies the condition, P n L p = Pn L p , then P n L p is dosed in
Lp and a best aproximation from P n Lp exists. In particular, K satisfies
this condition for all 1~ p ~ x, and, hence, these results are applicable to
K" Lp • The following property of bounded sequences is basic in the
derivation of this result. If (k,,) is a norm-bounded sequence in P r" L p ,

then there exists a subsequence (gil of (k n ! and g in P n L p sllch that
gi ---+ g pointwise on int(5) and a.e. on S. Such a sequence is bounded above
on every compact Tc int(5) and below on S uniformly in!l. Furthermore,
if (k,,) is a sequence in K n L p and iik" - k'i p ---+ 0 for some k which :s cen··
tinuous on int(S), then k ll ---+ k point\vise on int(S) and uniformly on ali
compact subsets T c int(5). Such a property has been shown to ~old it:
[5J for monotone (n-convex) function defined on a bounded open ::ea1
interval. In Section 2, we establish severa! preliminary results. The analysis
of the distance function measuring the distance of a point in a convex se;:
fron1 its complement is of independent interest. This function is conCE"e on
the convex set, and it is a tool in the analysis of the problem.

We established in [8,9J the existence and some properties of a best
Lp-approximation from subsets of special functions on a compact real
interval. The unifying treatment and results were applicable to vario'..:s
classes of functions including quasi-convex, ::onvex, super-additive, star­
shaped, monotone, and n-convex functions. However, the anaiysis used the
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theory of functions of bounded variation on a compact real interval. The
absence of any such theory on Rm and the complications presented by the
higher dimensionality require us to develop different methods. Again the
lattice structure that was significant in the analysis of the isotone
approximation problem [4] is not applicable to our problem, hence the
methods of [4] cannot be used. The problem of uniform approximation by
convex functions on S c R m is analyzed in [7, 10].

2. PRELIMI~ARIES

We establish some preliminary results which are used later. We first
introduce some notation. Recall that int(A) denotes the interior of A c Rm.
We denote by .4 the closure of A, and by B(s, r) and lJ(s, r), respectively,
the open and closed balls in R m with center s and radius r. Let II denote
the Lebesgue measure on R m

.

We note that if A c R m is convex, then int(A) is convex and
fl(A - int(A)), the measure of its boundary points, equals zero [1]. Recall
that A is a convex body if it is convex with int(A) nonempty [12]. For
such a set, A = int(A ).

For A c Rm
, define the distance function d(s, A) for s in R m by

d(s, A)=inf{ls-TI: TEA},

where lsi is the Euclidean norm of s. It is known that dis Lipschitzian; i.e.,
for all s, T in R nI

,

Id(s, A)-d(t, A)I ~ Is-tl. (2.1 )

It is easy to show that there exists t in A such that d(s, A) = Is - tl. If A is
convex, then .4 is convex and such a t is unique, and d is a convex function
of s [12]. In the next two propositions, we analyze d(s, A) when A is not
convex and obtain properties of convex sets.

PROPOSITIOK 2.1. Let S c R f1l be a bounded convex body. Then d(s) =
d(s, R f1l \S), s E R nI

, is a Lipschitz continuous funcTion which is concave on S
with {s ES: d(s) > O} = int(S). Furthermore, for r> 0 sufficiently small, if
T = {s E S : d(s) ~ r}, then T is a compact convex body with T c int(S).

Proof Clearly d(s»O for s in S if and only if sEint(S). We establish
the following concave inequality for d: if s, t E S, then

d( I.s + (1 - t.) t) ~ ;.d(s) + (1 - i.) d( t ), (2.2)

Suppose first that d(s»O and d(t»O. Then the sets B(s,d(s)) and
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B(t, d(t)) are contained in intIS). Since intIS) is convex, the convex hull E
of these two sets is contained in intIS). If 1l = is + (1- ;.) t, then, clearly,
B( u, i.d(s) + (1 - A) d( t)) C E. Hence, (2.2) holds. Suppose now that d{s) > 0
and d(t) = O. Then s E int(S) and t E S,\int(S). Let F be the convex hull of
B(s,d(s)) and {t}. Let F'=F{t}. By Theorem 6.1 of [6], because the
relative interior of S equals intIS), we have is + (1 - I,) t E intI S) for
o< i. :s; 1. Hence, F' C intIS). Then, as before, d( tI, i.d( s)) C F', which shows
that d( 11) ;;:dd(s) and (2.2) holds. If d(s) = d( t) = 0, then clearly (2.2) holds.
Lipschitz continuity follows from (2.1). By concavity and continuity of d,
T is compact and convex. It is contained in :nt(S), and, for small t,

int (T) = {s : d( s) > r} is not empty.

LEMMA 2.1. Let Sand d be as in Proposition 2.1. Then there exists a
sequence (Tn) of compact conrex bodies with Tn C Tn -T! such that U Til =
intI S). Furthermore, if T' c intIS) is any compact set, then there exists C!

compact convex body T with T' c Tc intIS).

Proof The required Til are given by Tn = {s E 5 : d( s) ~ 1111 }. Define
r = min {d(s) : sET'}. Then r > 0 and T' c {s E: S : d(s) ~ r} = T.

LEMMA 2.2. Let Sand d be as in Proposition 2.1. Let (Fn ) be a sequence
of measurable subsets of S such that lim sup l-i(F,,) < ,11(5). Define

Then lim inf 15 n > O.

Proof Suppose that lim inf bn = O. Then there exists a decreasing
convergent subsequence of (15,,) with limit O. Assume, without loss of
generality, that bn ~ 6" ~ 1 and 15" --+ O. We show a contradiction. Define
Gn = {sES:d(s»b,,}. Then G"cG"-t-l' G"cF,,, and UG,,=int(S).
Hence, /-l(G,,)->/-l(int(S))=/-l(S). It follows that /1(F,,)--+j1(S), a contra­
diction. The proof is complete.

In the next two propositions, we establish the existence of a bes!
approximation from P 0. L p under general conditions and develop con­
vergence properties of an equi-Lipschitzian sequence of L p . Recall the
definition of J5 from Section 1.

A subset F of H is called equi-Lipschitzian relative to a set T c S if each
fin F is finite on T, and for some c > 0,

If(s)- f(t)!:s;c Is-t; (2.3)

for all f in F and all s, t in T. We remark that the conditions on P 0. Lp

given in the next proposition are called the property of boundedly a.e.
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sequential compactness in [2], where a general theory of existence of best
approximations is developed. The proof of the proposition is similar to that
of Theorem 2.7 (1) of [2] and is presented here for the convenience of the
reader.

PROPOSITIO)l 2.2. Suppose that Pc H satisfies the following conditions:

(i) PnLp=PnLp.

(ii) Every norm-bounded sequence (k n) in P n L p contains a sub­
sequence (g;) such that gi -- g a.e. on S for some g in L p.

Then P n L p is closed in L p and a best approximation to f in Lpfrom P n Lp
exists.

Proof We prove the proposition for 1:::; p < 00. The proof for p = x' is
simpler.

To show the existence of a best approximation, let k" E P n L p with
U -kn ll:::;11 + lin, where 11 is defined in Section 1. Then, by condition (ii),
(kn) contains a subsequence (g;) such that gi -- g a.e. where gE Lp. Clearly,
g E P and, by condition (i), g E P n L p • By Fatou's Lemma [3], Ilf - gllp:::;
lim inf Ilf - gi lip = 11. Hence, g is a best approximation. If P n L p is not a
closed set, then a function that is not in the set but is in its closure does
not have a best approximation. This is a contradiction. The proof is
complete.

PROPOSITION 2.3. Let Tc S be a compact convex body. Let (kll ) be a
sequence in L p, 1:::; p < ,x, such that Ilk" - k1lp -- 0 for some k in Lp- If (kn)
is equi-Lipschitzian relative to T and k is continuous on T, then k" -- k
un((ormly on T and k is Lipschitzian on T.

Proof Suppose that (kll ) satisfies (2.3) on T. We first show that k" -- k
on T. Suppose sET, e > 0, and e= el(2c). By continuity of k at s, there
exists O<r<(} so that if V= TnB(s, r), then ik(s)-k(t)1 :::;e/2 for all tin
V. We show that Jl( V) > 0. Since T= int(T), there exists v E int(T) n B(s, r).
Consequently, for some p > 0, B(v, p) c V and, hence, Jl( V) > 0. Now
Ik,,(s)-kll(t)1 :::;e/2 for t in V. Hence, Ikll(t)-k(t)l?' Ikn(s)-k(s)l-e for
all t in V, for all n. If X denotes the characteristic function of V, then

Letting n -- x" we have kll(s) -- k(s) on T. Since k n satisfies (2.3) on T, so
does k and, thus, k is Lipschitzian. To show uniform convergence on T, we
use a known argument ([3, p. 266] or [6, p. 90]). Let e > °and WeT be
a finite set so that every element of T is at a distance no greater than ej(3c).
Since T is bounded, this is possible. Again, since W is finite, there exists
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N>O so that !k,,(t)-k(t)! ~e!3 for all t in rv, all n~N. Given 5 in T, let
t in W satisfy Is - t[ ~ ej(3c). Then, for alln ~ N, we have

ik,,(5)-k(s)1 ~ ik,,(s)-k,,(t)i + Ik,,(t)-k(tli + lk(t)-k(s)1 ~£

uniformly for all 5 in T. The proof is complete.

LHalA 2.3. (fkEKnL p , l~p~x, then k> -x on S.

Proof Suppose to the contrary that k(t) = -x for some t in S. We
first select, in the following manner, a set of points 5 i in S, 0 ~ i ~ n, with
So = t so that 5; are affinely independent (i.e., 5; - So, 1~ i ~ n, are linearly
independent) and k(5;) < X, i ~ 1. Since /1(5) > 0, there exists some
s 1E S'.. {So} for \vhich k(s 1) < x, for otherwise k is not in L p • In general,
having chosen affinely independents j, 0 ~ i ~ j, with j < nand k( sJ < ::C, let
affi denote the affine variety or flat spanned by {s j }. Since the dimension
of affi is j < n, .u(affj ) = O. Hence, there exists Sj-r 1 in 5'\aff; such that
k(Si+l)<X, for otherwise k is not in L p • The points Sj, O~i~j+ 1, are
then affinely independent.

Now let A denote the convex hull of 5;, 0 ~ i ~ n. Clearly int(A) is not
empty. If 5Eint(A) then there exist i.j>O such that Xi. j = 1 and s=2;1ljS"
We then have, by convexity, k(s)~D'ik(sJ Since k(so) = -x and
k(sjl < x, i~ 1, we have k(s) = -x; on a set of positive measure. Thl.:s k
is not in L p . The proof is complete.

3. MAl"'" RESULTS

We establish properties of norm-bounded subsets and convergent
sequences of convex functions as well as the existence of a best approxima­
tion. If A, BeRm, let dist(A, B) denote inf{ls-ti :sEA, tEB}. If A is
bounded, then there exist u in A and r in 13 such that dist(A, B) = ill. - vi.

THEOREM 3.1. Let (k,,) be a sequence offunctions in KnLp, 1~p~x.
such that !'k"iip~Dfo" all 11 and some D>O. Let Tcint(S) be a compact
set.

(ii) If 1~ P < 'x, then

sup{kll(s): sET,n~l}<x,

Ifp= x, then kll(s)~ ilk"lI:" ~Dfor all sin int(Sl.
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(ii) If 1~ P< 00, then

inf{kn(s) : S E S, n ~ 1} > -x'.

IfP =JJ, then kn(s) ~ -llknll ex ~ -D for all sin S.

COROLLARY 3.1. Let k E K n L p. Then for 1~ P <::t::;, k is bounded above
on T and below on S. Hence Ikl < 00 on int(S). If p = 00, then k is bounded
above on int(S) by Ilkll ex and below on S by -llkl: ex' For all p, k is
continuous on int(S).

Proof Since, by Lemma 2.1, T is contained in a compact convex body
which is a subset of int(S), it suffices to prove the result when T itself is such
a convex body, and we do so. We prove the theorem and the corollary
simultaneously.

We show (i) for l~p<x. Let Mn=sup{kn(s):sET} and In n=

inf{kn(s) : sET}. Then 00 ~ M n~ mn~ -OC'. SUPPQse first that M n= Inn'

Then k n = Aln on T, and if X is the characteristic function of T, then

D~ IIknllp~ IlknXlip~ IMill p(T)t,p.

Thus IAlnl ~Dp(T)-I'P independent of n.
Now suppose that Aln> Inn' Let N be a positive integer. There exist

Xn,Yn in T so that kn(xn)~min{Mn,N}-1 and kn(xn»kn(Yn)' By
Lemma 2.3, kn(,YIl) > -oc. Consider the line segment defined by the points
z(l.) = XII + io(xn- Yn), i. ~ O. Using the convexity condition, it may be
easily verified that kn(Z(A)) is a nondecreasing function of A~ O. For some
o~ i. t < i0 2, zUd and Z(i'2)' lie, respectively, on the boundaries of T and S.
Then there exists I. with )'1 < I. < )'2 such that, if Zn = z(l.), then d(zn, T) =
d(z,,,RIll\S)=()n, say, where dis defined in Section 2. Suppose uETand
vES\int(S) such that IZn-ul=lzll-vl=()". Let dist(T,RIll\S)=c>O.
Then

Hence, if 0 < r < c12, then B n = B(zn' r) c int(S)\T for all n. By the
monotonicity of kn(z(J.)), we have kn(zn) ~ kll(xll ). Also p(Bn) = P > 0
independent of n. Let

We next show that p(Cn)~pI2>0. If sEB,,, then either SECn or
sEBn\CIl . In the latter case, if zn=(s+t)/2 for tin S, then clearly tEBn.
The convexity inequality gives kll(zn) ~ (kills) + kn(t) )/2, i.e.,

kn(t) - kn(zn) ~ kn(zll) - kll(s) ~ O.
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Thus~ tEen, and \ve have sho\vn that B,,=Cn l.....;{2z n -Cn }. Hence
p(Cn );;:: p(Bn )/2;;:: p/2 > O. If Z is the characteristic function of e,,, then
since k,,(5);;:: k,,(xn);;:: min {2\.fn, N} -1 for s in Cn, \'v'e conclude that

for ail nand N. Hence, letting N -+ x, we conclude that AI" are bounded
above uniformly in n. Thus (i) is established for 1~ p < x.

Now suppose that p = 'x:. Let k E K n Lx. We show that k(s) ~ :Ik;! x for
all 5 in intiS). This establishes the assertion, Suppose that there exists t in
intiS) such that k(t) > !lkll x' Then there exists r > 0 such that T = BU, r) c

intiS). Then by arguing as above for this compact convex body T, we show
that there exists C c intiS) with p( C) > 0 and k(s) ;;:: k(t) > Ilk!! 0:: for all 5 in.
C. This contradictIOn to the definition of !:kj: x proves the assertion. The
proof of (i) is complete.

Before proceeding to (ii) we establish COiollary 3.1. If 1~ P < x, we may
argue as in (i) or let k" = k for all n there to conclude that k is bounded
above on T. It follows that k < 'x: on intiS). Again, by Lemma 2.3.
k> -x on intiS). Thus k is finite on S. Hence k is continuous on intIS}
[6, Theorem 10.1]. Let uEint(S). Then there exists a subgradient at it [6,
Theorem 23.4]. Hence, k is bounded below on S. If p = x, then, c.s in (i;.
k(5) ~ !;ki: x for all s in intiS). Also, we may shmv as above that k is
continuous on intiS). Since k;;:: - ilk! X' a.e. OE 5, continuity of :'<: shows
that k(s);;:: - liklix; for all s in intiS). Now iet t E S',int(S) and s E i;:t\S),
Then i.t + (1- J.) s is in intiS) for all 0 ~ i. < 1 [6, Theorem 6.1]. Hence, by
Theorem 7.5 of [6], we have k(t);;::limk(i.t+(1-i.)s; as i.Al. (In Lie

notation of that theorem, we have I( Y) ;?: (cl f)( y).) Hence k( t);;:: - % •

The corollary is now established.
Now we establish (ii) for 1~ P<x. As shown above, each k" is finite

and continuous on intiS). We first show that (k n ) is bounded belm'! on
int(S) uniformly for all n. Assume to the contrary that there exist tIl in
intiS) with knit,,) <0 for all nand k,,(tn) -+ -x. We reach a contradiction,
Let

F { . 'S)· k I) '0'
11= sElnt\ " ,,\,5;<')

and k,,(tnJ = ell" Then t" E Fn and Fn is open by continuity of k" on intiS),
We show that p(F

Il
) --+ O. Define Vn c Rill + I by

where co(A) denotes the convex hull of A c RIIl
- t. It is easy to see that V"

is a convex cone with base {(5, 0) : SE Fn } and apex. (t,,, en)' Clearly, the
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epigraph E(k,,) of k,,, because of its convexity, contains Vn- Define a
function I" on F" by

I,,(s) = inf{u : (s, U)E V,,}, sEF".

Then by convexity of V"' !" is convex on F", 0):1,,): k" on F", and
!,,(t,,) = Cn- Now let

H,,= {sEF" :I,,(s)~c,,/2}.

Then H" c F" and f1(H,,) = f1(F,,)/2 m
. Define a function h" on S by

h,,(s) = c,,/2, if S EH", and 0, otherwise. Then Ik,,1 ): Ih,,1 on S, and we have

Since c" -+ -00, we have f1(F,,) -+ O.
We now apply Lemma 2.2. If d and b" are as defined there, we conclude

that lim inf b" > O. For convenience of notation, assume lim b" = 48 > O.
Choose N so that b,,): 28 for n): N. In what follows consider n ): N. There
exists u" ES\F" such that b" = d(u,,). Since b" > 0, U" Eint(S). Consider the
line segment L joining t" and Un- It intersects the boundary of F" at X".

When L is extended beyond u", it intersects the boundary of S at Z".

Clearly d(z,,) = O. Since t" and U" are in int(S), which is convex, we con­
clude that x" is in int(S). By continuity of k" on int(S), we have k,,(x,,) = O.
Let Y" = (u" + z" )/2. Then, by concavity of d, we have

d(y,,)): (d(u,,) + d(z,,))/2): b,,/2): 8.

Hence, by Proposition 2.1, y" lies in the compact set T = {s ES : d(s) ): 8}
and Tc int(S). Also,

Now x,,=io,,{,,+(I-)o,,) y" for some O~;',,~ 1. By the above observation
we must have )0"): p > 0 for some p. Now,

which gives k,,(y,,)): - io,,/(1- i.,,) k,,(t,,). Since k,,(t,,) -+ -CD, we conclude
that k,,(y,,) are not bounded above. Again, since {y,,} c T; this is a con­
tradiction to (i). Thus, (k,,) is bounded below on int(S) uniformly in n.

Now, if t ES\int(S), then, as in the above proof of Corollary 3.1, we
let sEint(S) and observe k,,(t)):limk,,(At+(I-i.)s) as i.n, where
i.t + (1 - ;.) s is in int(S) for all 0 ~ i, < 1. This shows that (k,,) is bounded
below on S uniformly in n. The proof for 1~ p < x is complete. Now the
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proof for p = ,x is contained in the proof of Coronary 3.1. The ProOl 1S

complete.

A function f in H is said to be lower semi-continuous at s in 5 if 1(5) ~
limf(sf) for every sequence (sJ in S such that Sf converges to s and the
limit of (j(sJ) exists in [ - x, x].

THEOREM 3.2. Let (k n ) be a sequence offunctions in K (\ L p , 1~ p ~ '5:,

such that Ii k n ,I p ~ D for all n and some D > O. Then there exists a 51;b­

sequence (gJ of (k ll ) and a gin K n L p such that gi --4 g pointwise on int(S),
and hence a.e. on S, since p(S'int( S)) ~ O. Such a g has the following proper­
ties: g is lower semi-continuous on S, Igl <''X; on intIS), and Ii gjlp ~ D.
Furthermore, the conL'ergence of gi to g is uniform on erery compacr
Tcint(S).

Proof We prove the result for 1~ P < x. The proof for p = ,x is sim­
pler. By Theorem 3.1, the real number sequence (k,,(s)) is bounded for each
s in intIS). Since intIS) is relatively open, by Theorem 10.9 of [6J, there
exists a finite convex function g on intIS) and a subsequence (gil of (k,,)
such that gi --4 g pointwise on intIS) and uniformly on a compact 1. To
extend g to S let t E S\int(S) and s E intIS). Then it -+ (1 - J.) S E intI 51 for
ail 0 ~ i. < 1, and we set

g(t) = limit g(i.t + (1 - i.) s), {i 1.

Then, by Theorem 7.5 of [6], g is lower semi-continuous on 5. (Note that
in that theorem, c1 f is lower semi-continuous.) Such an extension is ircde­
pendent of the choice of s.

It now suffices to show that gE L p with I: gii p ~ D. Indeed, let (Til) be a
sequence of compact convex sets with Tn C Tn..,.; and U Til = int(S).
(Lemma 2.1 gives a procedure for constructing such a sequenee.) Let 1.." be
the characteristic function of T". By Theorem 3.1, there exists a finite
positive number Aln such that !g;/."i ~M~n< Since constant functions are in
L p , using the bounded convergence theorem [3], we let i -> x in the
obvious inequality II gil.,,!l p ~ il gi:l p ~ D and conclude that \1 p"li p ~ D. :-Jaw
1gl.,,1 p t igl p on intiS) as n --4 X). Hence, by the monotone convergence
theorem [3J, we have ilgl\p~D. The proof is complete.

THEOREM 3.3. (i) Suppose that Pc K satisfies P n L p = Pn Lv,
1~ p ~ x. Then P n L p is closed in L p and a best approximation w f in L p

from P n L p exists. In particular, K n L p is a closed conrex cone and a best
approximation from K n L p exists.

(ii) Let (k,,) be a sequence in KnL!', l~p<x, such thar

640·63. 2-3
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Ilkn - kll p ---+ 0 for some k in Lp which is continuous on int(S). Then kn ---+ k
pointwise on int(S) and uniformly on every compact Tcint(S).

Proof (i) By taking convergent sequences it is easy to show that
K = K, and hence K!l L p = K!l L p • Now Theorem 3.2 shows that P!l L p

and K!l Lp satisfy the conditions of Proposition 2.2. Hence the assertions
follow.

(ii) By Lemma 2.1, we may assume that T is a compact convex body.
By Theorem 3.1, (k n ) is bounded on T uniformly in n. Hence, by
Theorem 10.6 of [6], (k,,) is equi-Lipschitzian relative to T. Now Proposi­
tion 2.3 shows that k n ---+ k uniformly on T. Since Tc int(S) is arbitrary,
this implies that k" ---+ k on int(S). The proof is complete.

The existence and uniqueness of a best approximation from K!l L p ,

1 < p < x, also follows from the uniform convexity of L p , 1 < p < x, and
the closedness and the convexity of K!l L p •

We now present an alternative approach to the analysis of our problem.
By Lemma 2.3, if kELp is convex, then k> -x, on S. Using this fact, we
may give another definition of a convex function: k in H is convex if
k> -x; on 5 and the convex inequality (1.1) holds for all s, tin S. Clearly,
the terms 00 -OC; cannot appear in this definition. Let K I be the set of all
so defined convex functions. Note that K I c KI = K. (To show KI = K, let
k E K. Then kn = max {k, - n} is in K I for all 11 and k" ---+ k.) The following
lemma may be established by methods similar to that of Lemma 2.3.

LEMMA 3.1.

1~p~ x'.

It follows that K I !l L p= K!l L p. All the results of Section 3 remain valid
if we replace K there by K I •
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