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If S is a bounded convex subset of R™, the problem is to find a best approxima-
tion to a function in L,(S), 1 € p<oc, by an arbitrary subset of convex functions.
An existence theorem for a best approximation is established under a certain
condition on the subset. In particular, a best convex approximation exists. Also
investigated are properties of norm-bounded subsets and L,-convergent sequences
of convex functions. € 1990 Academic Press, Inc.

1. INTRODUCTION

Let L,, 1< p< oo, be the Lebesgue space of extended real functions on
a bounded convex subset of R™. The problem is to find a best approxima-
tion to a function in L, by an arbitrary subset of convex functions. It is
shown that, under a certain condition on the subset, a best approximation
exists. In particular, a best approximation from the set of all convex func-
tions exists. As a tool for analysis, properties of norm-bounded subsets and
convergent sequences of convex functions are explored.

Let S< R™ be a bounded convex body, i.e., a convex set with nonempty
interior int(.S). Let H be the set of ail extended real-valued functions on S.
Let L,=L,(S), 1 <p<oc, denote the Banach space of all (equivalence
classes of) Lebesgue measurable functions fin H with | | f|# < oo and norm
1f1,= ([ 1/17)"7. Similarly, L, =L,(S) is the Banach space of (equiv-
alence classes of) essentially bounded functions f with norm | f| =
ess sup | f|. A function k in H is said to be convex if

k(s + (1= 2) 1) < Ak(s)+ (1 — 2) k(1) (L.1)
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CONVEX APPROXIMATION 145

for all 0<i<1 and all 5, re S for which the right-hand side of (1.1} is
defined; i.e., only those, s, t for which k(s) and k(¢) are simultaneously not
infinite with opposite signs are to be considered [11]. Equivalently, {!.1}
may be considered only when k(s)<oc and k{f)< x. It can easily
shown that k is convex if and only if its epigraph,
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E(k)y={(s,u)e Sx R k{s)<u},

is a convex subset of Sx R [117]. Let K< H denote the set of ali conv
functions. Clearly, K is a convex cone. Let P < K be an arbitrary set.
what follows a notation such as P n L, denotes all equivaience classss in £,
to which a function in P belongs. As usual, we carry out the arguments for
the representative element of the class. Let f'e L, and 4 denote the infimum
of \f—ky,for kin Pn L,. The problem is to find a g in PN L, called 2
best approximation to ffrom Pn L, so that | f — g ,=4. For i <p<x,
L, is uniformly convex and, hence, a best approximation from Pn L, exist
and is unique if PN L, is closed and convex [3]. We are interested in
examining existence when PN L, is not necessarily convex.

We say that P < H is a.e. sequentially closed if it is closed under z.e. con-
vergence of sequences of functions. We derote by P the smallest supers set
of P which is a.e. sequentially closed. Note that P is a.e. sequentially closed
if and only if P=P. Our main results appear in Section 3. We show that
if Pc H satisfies the condition, PNL,=PnL,, then Pn L, is closed in
L, and a best aproximation from P n L, exists. In particular, K satisfies
this condition for all I < p < =, and, hence, these results are appiicab;s to
KnL,. The following property of bounded sequences is basic in the
derivation of this result. If (k,) is a norm-bounded sequence in P L
then there exists a subsequence {g;) of {4,} and g in PnL, such fi‘at

;— g pointwise on int(S) and a.e. on S. Such a sequence is bounded above
on every compact 7 < int(S) and below on § uniformly in #. Furthermore,
if {k,) is a sequence in KN L, and |k, — &', — 0 for some & which s con-
tinuous on int(S), then .’:,,—»k pomtmse on int{5) and uniformly on
compact subsets 7 <int(S). Such a property has been shown i
{57 for monotone (n-convex) function defined on a bounded open reai
interval. In Section 2, we establish several preliminary results. The anaiysis
of the distance function measuring the distanice of a point in a convex set
rom its complement is of independent interest. This function is conceve on
he convex set, and it is a tool in the analysis of the problem.

We established in [8, 9] the existence and some properties of a best

L -approximation from subsets of special functions on a compact real
interval. The unifying treatment and results were applicable {o various
classes of functions including quasi-convex, cenvex, super-additi

shaped, monotone, and n-convex functions. However, the anai;sg: u
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146 VASANT A. UBHAYA

theory of functions of bounded variation on a compact real interval. The
absence of any such theory on R™ and the complications presented by the
higher dimensionality require us to develop different methods. Again the
lattice structure that was significant in the analysis of the isotone
approximation problem [4] is not applicable to our problem, hence the
methods of {47 cannot be used. The problem of uniform approximation by
convex functions on S = R™ is analyzed in [7, 10].

2. PRELIMINARIES

We establish some preliminary results which are used later. We first
introduce some notation. Recall that int(4) denotes the interior of 4 < R™.
We denote by A4 the closure of 4, and by B(s, r) and B(s, r), respectively,
the open and closed balls in R™ with center s and radius ». Let u denote
the Lebesgue measure on R™.

We note that if A< R™ 1is convex, then int(A4) is convex and
u(A —int(A)), the measure of its boundary points, equals zero [1]. Recall
that 4 is a convex body if it is convex with int(4) nonempty [12]. For
such a set, 4 =int(A).

For 4 = R™, define the distance function d(s, 4) for s in R™ by

d(s, A)=inf{|s—1| : re A},

where |s| is the Euclidean norm of s. It is known that 4 is Lipschitzian; i.e.,
for all s, ¢t in R™,

ld(s, A)—d(t, A)| < |s— . 2.1)

It is easy to show that there exists # in A such that d(s, A)=|s—1]. If 4 is
convex, then A4 is convex and such a ¢ is unique, and d is a convex function
of s [12]. In the next two propositions, we analyze d(s, A) when A is not
convex and obtain properties of convex sets.

PrROPOSITION 2.1. Let S<R™ be a bounded convex body. Then d(s)=
d(s, R™\S), se R™, is a Lipschitz continuous function which is concave on §
with {s€ S :d(s)>0} =int(S). Furthermore, for r>0 sufficiently small, if
T={seS:d(s)=r}, then T is a compact convex body with T <int(S).

Proof. Clearly d(s)>0 for s in S if and only if seint(S). We establish
the following concave inequality for d: if s, t€ S, then

dUs+(1—2) 1) id(s)+(1— A d(1), 0<A<L. (2.2)

Suppose first that d(s)>0 and d(r)>0. Then the sets B(s, d(s)) and
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B(1, d(1)) are contained in int(S). Since int(5) is convex, the convex hull £
f these two sets is contained in int(S). If u=/s5+ (1 — 1) ¢, then, clear! y
B(u, /d(s)+ (1 —4)d(t)) < E. Hence, (2.2) holds. Suppose now that d{s} >
and d(t)=0. Then seint(S) and 7€ S\int(S). Let F be the convex hull of
B(s.d(s)) and {r}. Let F'=F\{r}. By Theorem 6.1 of {6], because the
relative interior of S equals int(S), we have ss+{i—4}reint{S} for
0 <4< 1. Hence, F' < int(S). Then, as before, d(u, 2d{s}) < F’, which shows
that d{u) > Ad(s) and (2.2} holds. ¥ d(s) = d{s) =0, then clearly (2.2} hoids.
Lipschitz continuity follows from (2.1). By concavity and continuity of &,
T is compact and convex. It is contained in int(§), and, for small 7,
int(7)= {5:d(s)>r} is not empty.

LesmMa 2.1. Let S and d be as in Proposition 2.1. Then there exists a
sequence {T,) of compact convex bodies with T, =T, .| such that {j T,=
int(S). Furthermore, if T' <int(S) is any compact set, then there exists o

compact convex body T with T' < T <int{S).

P:oo,*" The required 7, are given by 7,={s€S:d(s)>=1/n}. Define
r=min{d(s):seT'}. Then r >0 and T’ '"”S:a’(s}ér}zlﬁ
LemMAa 2.2, Let S and d be as in Proposition 2.1. Let {F,} be a sequence

of measurable subsets of S such that im sup u{F, ) < u{ S} :’)eﬁne
6,=supid(s):seS.F,}.
Ther hm infé,> 0.

Proof. Suppose that liminfd,=0. Then there exists a decreasing
convergent subsequence of (4,) with limit 0. Assume, without loss of
generality, that 6,>46,,, and §,— 0. We show a contradiction. Define
G,={seS:d(s)>d,}. Then G,=G G,=F, and U G,=iat{5)
Hence, w(G,)y - p (int(S)) = u(S). It follows that p{F,)— u(S), a contra-
diction. The proof is complete.

ne o

In the next two propositions, we establish the existence of a bes:
approximation from Pn L, under general conditions and develop con-
vergence properties of an equi-Lipschitzian sequence of L,. Recall ¢
definition of P from Section 1.

A subset £ of H is called equi-Lipschitzian relative to a set T< S if each
fin F is finite on T, and for some ¢ >9,

Sy —finl<els—g {2

for all fin F and all 5,7 in T. We remark that the conditions on Pn i,
given in the next proposition are called the property of boundediv a.e.

Lad
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148 VASANT A. UBHAYA

sequential compactness in [2], where a general theory of existence of best
approximations is developed. The proof of the proposition is similar to that
of Theorem 2.7 (1) of [2] and is presented here for the convenience of the
reader.

PRrROPOSITION 2.2.  Suppose that P < H satisfies the following conditions:
(i) PnL,=PnL,.

(ii) Every norm-bounded sequence (k,) in PnL, contains a sub-
sequence (g;) such that g,— g a.e. on S for some g in L,.

Then P L, is closed in L, and a best approximation to f in L, from PN L,
exists.

Proof. We prove the proposition for 1 < p < o0. The proof for p=x is
simpler.

To show the existence of a best approximation, let k,e Pn L, with
f—k,| <A+ 1/n, where 4 is defined in Section 1. Then, by condition (ii),
(k,) contains a subsequence (g;) such that g; - g a.e. where ge L. Clearly,
ge P and, by condition (i), ge Pn L,. By Fatou’s Lemma [3], | f— gl , <
lim inf | f — g, I ,= 4. Hence, g is a best approximation. If PN L, is not a
closed set, then a function that is not in the set but is in its closure does
not have a best approximation. This is a contradiction. The proof is
complete.

ProrosiTiON 2.3. Let T< S be a compact convex body. Let (k,) be a
sequence in L,, 1 < p <oc, such that ||k, — k|, — 0 for some k in L,. If (k,)
is equi-Lipschitzian relative to T and k is continuous on T, then k,—k
uniformly on T and k is Lipschitzian on T.

Proof. Suppose that (k,) satisfies (2.3) on T. We first show that k, - k
on T. Suppose se T, ¢>0, and 6 =¢/(2c). By continuity of £ at s, there
exists 0 <r <@ so that if V=Tn B(s, r), then [k(s) —k(z)| <&/2 for all ¢ in
V. We show that u(¥)>0. Since T =int(T), there exists v € int(T) N B(s, r).
Consequently, for some p>0, B(v,p)<V and, hence, u(¥)>0. Now
lk (s)—k,(t)] <¢/2 for t in V. Hence, |k,(¢)—k(2)| = |k,(s)—k(s)| —e for
all #in V, for all n. If y denotes the characteristic function of ¥V, then

Ik, —kll, = ll(k, — k) xli, = max{|k,(s) — k(s)| —&, O} u(¥)"™.

Letting n — o¢, we have k,(s) — k(s) on T. Since k,, satisfies (2.3) on 7, so
does k and, thus, & is Lipschitzian. To show uniform convergence on 7, we
use a known argument ([ 3, p. 266] or [6, p. 907). Let e>0 and W< T be
a finite set so that every element of T is at a distance no greater than &/(3c¢).
Since 7 is bounded, this is possible. Again, since W is finite, there exists
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N>0 so that k(1) — k(1) <g&3 for all tin W, all x> N. Given 5 in T, let
tin W satisly |s — | <&/(3c). Then, for all » = N, we have

ke, (5) = ki) < k() =k (O + k(1) — k() + k(D) —&(s)l < &

uniformly for all 5 in T. The proof is compiete.

Lemma 23, IfkeKnL, I1<p<o, thenk> —x on §.

Proof. Suppose to the contrary that k(7)= —x for some r in S. We
first select, in the following manner, a set of points 5; in S, §<i<#n, with
5o=1 5o that s, are affinely independent (i.e., 5,—s,, | <i<n, are linearly
independent) and k(s;))< <, i=1. Since u(S)>0, there exists sore
s,€8% {5y} for which k(s,) < =, for otherwise & is not in L,. In genera
having chosen affinely independent s;, 0 <7< j, with r< n and k\s )<, d
aff; denote the affine variety or flat spanned by {s;}. Since the dimens
of aff; is j<n, u(aff)=0. Hence, there exists 5“1 in S*aff, such that
K{S_',-_H; < x, for otherwise k is not in L,. The points 5, 0<7<j+ 1, are
then affinely independent.

Now let 4 denote the convex hull of s5;, 0 <ign Clearly int{4) is not
empty. If seint(A) then there exist 4,>0 such that 24, =1 and 5=2 4,5,
We then have, by convexity, k(s)<Z/k(s,). Since ;'qsg; = —x and
kis;) <o, iz 1, we have k(s)= —xc on a set of positive measure. Thus
is not in L,. The proof is complete.

"
ion

o]

3. MamN RESULTS

We establish properties of norm-bounded subsets and convergent
sequences of convex functions as well as the existence of a best approxima-
tion. If 4, Bc R™, let dist(4, B) denote inf{is—1l:se4,reB}. If 4 i
bounded, then there exist u in 4 and ¢ in B such that dist{4, 8) = |u —vi.

THEOREM 3.1.  Let (k,) be a sequence of functions in KnL,, 1<p< x.
such thar [k, ,<D for all n and some D>0. Ler T <int(§) be a compac
set.

f\

() If 1< p<ac, then
sup{k,(s): seT,nz1}<x.

Ifp=x, then k (s)< ||k, . <D for all 5 in in

A

(S},
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(i) If 1< p<oo, then
inf{k,(s):s€eS,n=21}> —o0.

If p=0, then k,(s)= — |k, = —D for all s in S.

COROLLARY 3.1. LetkeKn L,. Then for 1 < p < x, k is bounded above

on T and below on S. Hence |k| < o0 on int(S). If p= ¢, then k is bounded

“above on int(S) by |k|,. and below on S by —|k| .. For-all p, k is
continuous on int(S).

Proof. Since, by Lemma 2.1, T is contained in a compact convex body
which is a subset of int(S), it suffices to prove the result when 7 itself is such
a convex body, and we do so. We prove the theorem and the corollary
simultaneously.

We show (i) for 1<p<oc. Let M,=supi{k,(s):seT} and m,=
inf{k,(s):s€T}. Then oc>M,>m,> —x. Suppose first that M,=m,.
Then k,=M, on T, and if y is the characteristic function of 7, then

D= Hh”,,? nknlll,;? anl /,((T)l"'p-

Thus |M,| < Du(T)~'” independent of n.

Now suppose that M,>m,. Let N be a positive integer. There exist
X,, ¥, in T so that k,(x,)>min{M,, N} -1 and k,(x,)>k,(y,). By
Lemma 2.3, k,(y,)> —oc. Consider the line segment defined by the points
z(2)=x,+ 4(x,— y,), A=0. Using the convexity condition, it may be
easily verified that k,(z(4)) is a nondecreasing function of 42 0. For some
0< iy <4y, z(4,) and z(4,), lie, respectively, on the boundaries of 7 and S.
Then there exists ~ with 2, < £ <4, such that, if z, = z(4), then d(z,, T)=
d(z,, R"\S8)=40,, say, where d is defined in Section 2. Suppose ue T and
ve S\int(S) such that |z,—u|=]z,—v|=86,. Let dist(T, R™\S)=c>0.
Then

"-

c<ju—vl<lz,—~ul+|z,—v| =20,.

Hence, if O<r<c¢/2, then B,=B(z,,r)cint{(S\T for all n By the
monotonicity of k,(z(2)), we have k,(z,)=k,(x,). Also u(B,)=p>0
independent of n. Let

C,={s€B,:k,(s)=k,(z,)}.

We next show that u(C,)=p/2>0. If seB,, then either seC, or
se B\C,. In the latter case, if z, = (s+ ¢)/2 for ¢ in S, then clearly e B,,.
The convexity inequality gives k,(z,) < (k,(s)+ k,(1))/2, ie.,

kn(t) - kn(Zn) > kn(zn) - k"(S) > 0
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Thus, reC,, and we have shown that B,=C,u {2z,—C,}. Hence

wC )= u(B,)2=2p/2>0. If y 1< the characteristic function of Ci. then
since k,{s)=k,(x,)=>min{M,, N} —1 for s in C,, we conclude that
D> Ilkn|p> |Ian||p Zmax{mln{lwn ‘\”Y: - 1’ G; J{Cﬂ}ip

for ail » and N. Hence, letting N — x, we conclude that M, are bounded
above uniformly in #. Thus (i) is established for 1 < p < x.
Now suppose that p=oc. Let ke Kn L, . We show that k{s) < ki, for

all s in int(S). This establishes the asserticn. Suppose that there exists ¢ in
int(S) such that k(7) > lik| ... Then there exists r >0 sach *hat T Bir ric

;

that there exists C < int(S) with u(C )> Oand kis) 2k
C. This centradiction to the definition of iki ~ DTo
proof of (i) is complete.

Before proceeding to (ii) we establish Corollary 3.1. If 1 < p < o, we ma
argue as in (i) or let k, =k for all » there to conciude that & is bounde:
above on T. It follows that k<oc on int(S) Again, by Lemma 2.3
k> —oc on int(S). Thus k is finite on S. Hence % is continuous on ini{5}
{6, Theorem 10.17]. Let ueint(S). Then there exists a subgradient at 0o
Theorem 23.47. Hence, k is bounded below on 5. If p = oo, then, as 1 \
k(s}< ki for all s in int(S). Also, we may ci‘oﬂ as above that & is
continuous on int(S). Since k> — jk] .. ae or S, cori tinuity of % smﬁv
that k{s)> — |k| . for all s in int(S). Now iet 7€ mx(S; ax‘d seint{§}
Then st +(1—2)sisinint(S) forall 0< 2 <1 6, Theo*em Henw‘ :
Theorem 7.5 of [6], we have A(f)Zlimk(st+{l —2)si as AT1L (In
notation of that theorem, we have f(yi={cl /¥ ).) Hence k{t)> — ¥
The corollary is now established.

Now we establish (ii) for 1< p< . As shown above, each %, is finite
and continuous on int(S). We first show that {(k,} is bounded below on
nt{S) uniformly for all n. Assume to the contrary that there exist ;, ;
int(S) with &,(z,) <0 for all » and k,(z,) » —sc. We reach a contradic
Let

F,={seint(S) 1k, {5} <0}

and &£,(t,}=c,. Then r,€ F, and F, is open by continuity of k, on int{5).
We show that u(F,) — 0. Define V, < R”*! by

V,=co{{(s,0):seF,}ul(,,c

Wil
ast g

where co(4) denotes the convex huli of 4 < R~ ' Tt is
(

HR
is a convex cone with base {(s,0}:seF,} and apex ). Cieari;\f., tr:s
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epigraph E(k,) of k,, because of its convexity, contains V,. Define a
function £, on F, by

fus)y=inf{u:(s,u)eV,}, seF,.

Then by convexity of V,, f, is convex on F,, 0>/f,>k, on F,, and
.fn(tn)= Cye Now let

Hn= {SEFn :fn(s) <cn/iz}'

Then H,<F, and u(H,)=u(F,)/2”. Define a function %k, on S by
h,(s)=c,/2, if se H,, and 0, otherwise. Then |k,| = |h,| on S, and we have

D=k, > lh,l,=(—c./20n(F,)/2")"*.

Since ¢, » —c, we have u(F,) — 0.

We now apply Lemma 2.2. If 4 and J,, are as defined there, we conclude
that liminfé,>0. For convenience of notation, assume lim d,=40>0.
Choose N so that 8, = 20 for n= N. In what follows consider n > N. There
exists u, € S\F, such that é,=d(u,). Since 5, >0, u, € int(S). Consider the
line segment L joining ¢, and u,. It intersects the boundary of F, at x,,.
When L is extended beyond u,, it intersects the boundary of S at z,.
Clearly d(z,)=0. Since t, and u, are in int(S), which is convex, we con-
clude that x, is in int(S). By continuity of &, on int(S), we have k,(x,)=0.
Let y, = (u, + z,)/2. Then, by concavity of d, we have

d(y,) = (d(u,) + d(z,))/226,/22>0.

Hence, by Proposition 2.1, y, lies in the compact set T= {se S :d(s) >0}
and T <int(S). Also,

'yn - xnl ; ’yn - un’ = 'Zn - unll/2 2 5"/'/2 > 6

Now x,=4,l,+(1—4,) y, for some 0< i, < 1. By the above observation
we must have 4,> p >0 for some p. Now,

0= kn(xn) < A.;nkn(’n) + (1 - /:n) kn(yn)’

which gives k,(y,)= — 4,/(1—4,) k,(t,). Since k,(¢,) > —oc, we conclude
that k,(»,) are not bounded above. Again, since {y,} < T, this is a con-
tradiction to (i). Thus, (k,) is bounded below on int(S) uniformly in n.
Now, if re S\int(S), then, as in the above proof of Corollary 3.1, we
let seint(S) and observe k,(t)=1limk, (At+(1—A2)s) as AT1, where
At+ (1 —2)s is in int(S) for all 0 < 4 < 1. This shows that (k,) is bounded
below on S uniformly in n. The proof for 1 < p < « is complete. Now the
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proof for p= ¢ is contained in the proof of Coroliary 3.1. The proo
complete.

A function fin H is said to be lower semi-continuous at s in S if f{s1<
lim f(s,) for every sequence (s;) in S such that 5, converges to s and the
limit of (f(s;)) exists in [ — =, ¢ ].

THEOREM 3.2. Let (k,) be a sequence of functions in KnL,, 1<
such that ik, ) p\D for all n and some D >0. Then there exists
sequence (g,) of (k,) and a g in Kn L, such that g;,— g pointwise on int{5}
and hence a.e. on S, since u(S int(S))=0. Sucha g has the foilowing proj
ties: g is lower semi-continuous on S, |gl < on int(S), and ligi, <D
Furthermore, the convergence of g, t¢ g is uniform on cvery compuct
T < int(S).

PE X,
.

L s -

Proof. We prove the result for 1 < p < . The proof for p= o is sim-
pler. By Theorem 3.1, the real number sequer\\,e (k,(5))1s bounded for each
s in int(S). Since int(S) is relatively open, by Theorem 10.9 of [61, the:
exists a finite convex function g on int(S) and a subsequence (g;) of {4
such that g,— g pointwise on int(S) and uniformly on a compact 7.
extend g to S let re S\int(S) and seint(S). Then Ar+ {1 — 1) s:mt(S} f
aill 0 </ <1, and we set

g(t)y=limit g4z 4+ (1 —2)s)

-
—
.

Then, bv Theorem 7.5 of [6], g is lower semi-continucus on S. ( Not@ that
in that theorem, cl f is lower semi-continuous.) Such an extension is i
peandent of the choice of s.

It now suffices to show that ge L, with { gji, < D. Indeed, let (T} be
sequence of compact convex sets with 7,7, . and  T,=ini(§
{Lemma 2.1 gives a procedure for constructing such 2 sequence.) Let ¥, be
the characteristic function of T,. By Theorem 3.1, there exists a f{inite
positive number M, such that |g,%,l <M ,. Since constant functions ars t
L,, using the bounded convergence theorem [3], we let i— x in the
obvious inequality [ g7/, < {g.], <D and conclude that | gy, |, < D. Now
igx,!?71gl” on int(S) as n— oo. Hence, by the monotone convergence
theorem [31, we have | g|}, < D. The proof is complete.

inde-

a
)

THEOREM 3.3. (i) Suppose that Pc K satisfies PnL,=PnL

l<p<oc. Then P L, is closed in L, and a best approximation 1o ;" in L

from P L, exists. In part.culat Kn L a closed convex cone and o
approximation. from K L, exists.

(it} Ler (k,) be a sequence in KnL, 1<p<coc, such tha:
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|k, —kll, — O for some k in L, which is continuous on int(S). Then k,— k
pointwise on int(S) and uniformiy on every compact T < int(S).

Proof. (i) By taking convergent sequences it is easy to show that
K=K, and hence Kn L,= Kn L,. Now Theorem 3.2 shows that PN L,
and K~ L, satisfy the conditions of Proposition 2.2. Hence the assertions
follow.

(ii) By Lemma 2.1, we may assume that T is a compact convex body.
By Theorem 3.1, (k,) is bounded on T uniformly in # Hence, by
Theorem 10.6 of [6], (k,) is equi-Lipschitzian relative to 7. Now Proposi-
tion 2.3 shows that k,— k uniformly on T. Since T <int(S) is arbitrary,
this implies that k£, — & on int(S). The proof is complete.

The existence and uniqueness of a best approximation from KnL,,
I < p<x, also follows from the uniform convexity of L,, | < p< =, and
the closedness and the convexity of KN L,.

We now present an alternative approach to the analysis of our problem.
By Lemma 2.3, if k€ L, is convex, then k> —aoc on §. Using this fact, we
may give another definition of a convex function: ¥ in H is convex if
k> —oc on S and the convex inequality (1.1) holds for all s, ¢ in S. Clearly,
the terms oo —oc cannot appear in this definition. Let K; be the set of all
so defined convex functions. Note that K, = K, = K. (To show K, =K, let
ke K. Then k,=max{k, —n} is in K, for all » and k, — k.) The following
lemma may be established by methods similar to that of Lemma 2.3.

LemMA 3.1.

KinL,=K,nL,, 1< p< oo,

It follows that K; n L, = Kn L,. All the results of Section 3 remain valid
if we replace K there by K.
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